Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light
نویسندگان
چکیده
We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids.
منابع مشابه
Highly efficient synthesis of tetrahydrobenzo[b]pyrans under visible light promoted by cesium carbonate
Multi-component coupling reaction (MCR) is a powerful synthetic tool for the synthesis of biologically active compounds. Development of such multi-component coupling reaction strategies in visible light has been of considerable interest, as they provide simple and rapid access to a large number of organic molecules through a sustainable path. An efficient and green protocol for the synthesis of...
متن کاملA New Step-based Photoreactor for Degradation of Acid Dye using N-TiO2-P25-coated Ceramic Foam under Visible Light
In the present study, a new step-based photoreactor was presented to investigate the degradation of Acid Red 73 under visible light irradiation. Four N-TiO2-coated alumina foams prepared by the modified sol-gel process were arranged in each step as photocatalyst. The experimental design methodology was employed to assess the interaction between the operational parameters in the step-...
متن کاملHydroelastic Vibration of a Circular Diaphragm in the Fluid Chamber of a Reciprocating Micro Pump
Reciprocating diaphragm micro-pumps are the most common type among indirectly–driven micro-pumps. They operate by reciprocating the diaphragm with associated check valves. This paper addresses the Hydroelastic vibration of circular elastic diaphragm interacting with the incompressible and inviscid liquid inside the cylindrical chamber with a central discharge opening. Taking into account axisym...
متن کاملImmobilization of cobalt doped rutile TiO2 on carbon nanotubes walls for efficient photodegradation of 2,4-dichlorophenol under visible light
In this work, we focused on improvement of rutile-type TiO2 degradation efficiency by cobalt doping and decorating on carbon nanotubes walls (CNTs) (Co-TiO2/CNTs). We also synthesized pure TiO2, Co-TiO2 and TiO2/CNTs samples for control experiments. The textural and morphology features of the samples were characterized by a range of analyses including: XRD, FESEM/EDX. FTIR, TEM, UV-Vis DRS and ...
متن کاملSunlight-powered kHz rotation of a hemithioindigo-based molecular motor
Photodriven molecular motors are able to convert light energy into directional motion and hold great promise as miniaturized powering units for future nanomachines. In the current state of the art, considerable efforts have still to be made to increase the efficiency of energy transduction and devise systems that allow operation in ambient and non-damaging conditions with high rates of directio...
متن کامل